中科院沈阳自动化所团队成功研发“仿蝠鲼类生命机器人”
科技日报记者李禾
在浩瀚无边的海洋世界里,有一种鱼拥有巨大的“羽翼”,像自带光环的礼服侠,它算是蝠鲼,也被称为“魔鬼鱼”。作为自然界最高效的游泳者之一,蝠鲼几乎能毫不费力地在水中滑翔,甚至在湍急水流中也能敏捷地来回游动。
蝠鲼图片
大自然为机器人的进展提供了巨大支持。近日,中国科学院沈阳自动化研究所类生命机器人研究团队以蝠鲼为设计灵感,研发了一种由体外培养的骨骼肌组织驱动、环形分布多电极(CDME)操纵的类生命游动机器人,那个机器人仅由一块肌肉组织驱动就可实现有效推进。
仿蝠鲼类生命机器人示意图
仿生学是重要的机器人研究办法之一,经过模仿自然生物的结构和行为来提高机器人的运动学性能。而类生命机器人以天然生物材料为机器人核心要素,是仿生学的进一步进展。例如,一些活体细胞差不多被用于实现机器人的部分功能,包括感知、操纵、驱动等,其中驱动作为决定其性能的关键因素,关系到机器人的整体性能。但是要进一步进展类生命机器人的可控运动性能,还需要创新推进方式和操纵办法。针对以上难题,研究人员提出了一种基于CDME的动态操纵办法。该项研究以论文《基于动态电刺激的“仿蝠鲼类生命机器人”》(AMantaRay-InspiredBiosyncretic Robot with Stable Controllability by Dynamic Electric Stimulation)发表在期刊《类生命系统》(CyborgandBionicSystems)上。
论文具体信息
研究团队发现,CDME产生的电场对培养基和细胞的伤害要比传统平行板电极要小,同时使用该办法可动态操纵所产生的电场方向,使其与机器人的驱动组织保持实时平行,进而保证机器人的稳定可控性。
在材料与结构方面,研究团队依照蝠鲼的结构设计了机器人的本体骨架,并选用聚二甲基硅氧烷(PDMS)作为结构的要紧材料。为了方便将驱动组织和机器人骨架结构进行装配,研究人员选择了以成肌细胞为核心所创造的环形组织作为机器人的驱动部分。
三维肌肉驱动组织制作办法示意图
为获得具有有效收缩力的环形肌肉组织,研究人员利用CDME的旋转电刺激实现成肌细胞向可收缩肌管的均匀诱导分化。此外,为操纵机器人以理想速度游动,他们还在装配机器人之前测量了在不同电刺激下肌肉组织的收缩力。
肌肉组织测量示意图。(a)肌肉组织驱动的PDMS测量结构示意图;(b)PDMS结构在驱动力作用下的形变模拟图。
在验证机器人的稳定可控性方面,为操纵类生命机器人以理想的速度游动,研究团队利用仿真办法分析了机器人的运动性能与驱动组织收缩力之间的关系。
类生命机器人游动仿真。(a)类生命机器人模型;(b)机器人游动仿真图;(c)不同刺激电压下机器人游动仿真结果;(d)不同刺激频率下机器人游动仿真结果。
为了展示所提出的类生命机器人的稳定可控运动,研究人员采用所提出的动态电刺激办法实现了机器人以不同速度进行可控游动。
基于CDME的类生命机器人动态操纵办法示意图
类生命机器人游动速度与电刺激幅值和频率的关系
在实验中,机器人展示了有效的游动和稳定的可控性,验证了研究团队提出的仿生设计和基于CDME操纵办法的有效性。
论文指出,该项研究所提出的仿生设计与驱动操纵办法不但能够促进类生命机器人的进一步进展,而且对软体机器人的仿生设计、肌肉组织工程等相关领域也有一定的潜在指导意义。
只是,现时期的类生命机器人尽管已实现了有效的可控运动,但仍有许多关键的瓶颈需要被突破。例如,所创造的机器人尺寸大多为厘米级,难以应用于体内药物运输等场景。于是,面向微纳生物结构的3D打印、柔性操作等技术是开辟应用于临床等特殊环境的类生命微型机器人的关键。此外,现有的类生命机器人大多依靠外部人工刺激实现可控运动,缺乏自主性。于是,基于活体细胞的感知与操纵办法可应用于类生命机器人研究,进而实现基于环境信息感知的机器人自主运动。
据悉,《类生命系统》是北京理工大学与美国科学促进会(AAAS)/Science共同打造的高水平国际英文科技期刊,入选“中国科技期刊卓越行动打算高起点新刊”项目。
该论文作者张闯是中科院沈阳自动化研究所副研究员,一直专注于机电系统与生命系统交叉融合研究。主持NSFC青年科学基金项目、中国博士后科学基金面上项目、中科院基础培育基金项目、中科院非常研究助理资助项目、辽宁省博士启动基金等;获得中科院院长非常奖,研究成果入选中国智能创造十大科技发展、中国机器人行业年会“科学引领奖”等。
(文中图片均由《类生命系统》期刊编辑部提供)
来源:中国科技网