潘建伟:已实现255个光子计算原型机,正研制首颗中高轨量子卫星
澎湃新闻记者邵文
“在2020年我们实现了76个光子的量子计算原型机‘九章’,‘九章’在求解高斯玻色取样的特定咨询题上,速度是当时最快的经典超级计算机的100万亿倍。之后我们的系统进行了不断的升级,近期我们差不多实现了255个光子的九章3号计算原型机,它针对特定咨询题的求解能力差不多比经典的超级计算机快1000万亿倍。”5月10日,在澳门举办的第三届BEYOND国际科技创新博览会(BEYONDExpo2023)上,中国科学院院士、中科院量子信息与量子科技创新研究院院长、中国科学技术大学常务副校长潘建伟介绍了目前量子科技方面的工作和对此领域的将来展望。
潘建伟牵头研制了国际上首颗量子科学实验卫星“墨子号”,建成了国际上首条量子保密通信骨干网“京沪干线”,并构建了首个空地一体的广域量子保密通信网络雏形。
在会上,潘建伟透露,“当前我们正在研制第一颗中高轨量子卫星,打算2026年前后发射。除了要实现量子密钥分发之外,这也为中高轨卫星量子周密测量提供了新的平台。”并且,潘建伟称打算在中高轨卫星上搭载一颗超高精度的光钟,它的稳定度将达到10的-19次方,也算是讲一年的误差不超过一秒。
中国科学院院士、中科院量子信息与量子科技创新研究院院长、中国科学技术大学常务副校长潘建伟视频演说。(主办方供图)
以下为澎湃科技整理的潘建伟在BEYONDExpo2023上的演说实录:
2022年的诺贝尔物理学奖颁给了3位量子科技领域的先驱,以表彰他们利用纠缠光子实现了贝尔不等式的违背(意味着纠缠粒子对真的是不可分离的整体,无法给予其中每个粒子单独的局域性质),并于是开创量子信息科学。特别高兴的是,在2022年诺贝尔物理学奖的新闻发布会和科学背景介绍中,都对中国科学家的相关工作进行了重点介绍,包括“墨子号”量子卫星实现星地的密钥分发、地星量子隐形传态以及我们最近的设备无关的量子密钥分发的工作。
为了便于大伙儿理解,首先请允许我对量子叠加原理进行简要介绍。大伙儿都明白,在我们的日常日子中,一只猫在某一个确定的时间只能处于活或者死状态里面的某一个。但是依照量子叠加原理,在量子事件当中一只猫能够并且处在两种状态。当把量子叠加原理拓展到多粒子体系,我们就能够得到量子纠缠的概念。例如在量子世界当中的两只猫,能够并且处于活和死状态的相关叠加。这种状态就像两个骰子一样,不论它们相距多么遥远,其中一个掷出的点数和另外一个一定是一样的。爱因斯坦将量子纠缠的这种现象称为遥远地方之间的诡异的互动。
在物理上任何两能级的系统(含有两个能级的量子系统)都能够用来构建一个量子比特,比如我们能够用一个光子水平和竖直两种极化状态来编码一个量子比特的信息。关于两光子的量子系统就能够处在四个最大的极化纠缠之中,再经过贝尔不等式来检验量子力学被定义的过程,物理学家从中进展出可对量子系统进行高精度调控的量子技术,从而导致了量子信息科学的诞生。
量子信息科学要紧包括两方面的应用:第一,利用量子通讯我们能够提供一种原理上是无条件安全的通讯方式。第二,利用量子计算我们能够大幅度提高运算。
量子密钥分发是最著名的量子通讯协议,能够实现基于单光子的量子密钥分发(QuantumKeyDistribution,QKD),从而在两个用户之间产生安全的密钥,再结合一次一密,就能够实现无条件安全的信息传输。并且,也能够实现基于量子纠缠的量子密钥分发。
在量子计算当中,人们是利用量子比特来编码信息,利用量子叠加原理实现超快的并行计算,从而在原理上能够达到指数级的加速。大数分解算法是目前最著名的量子算法,比如要分解一个300位的自然数,利用每秒运算万亿次的经典计算机需要15万年,而用同样运算速度的量子计算机则只需要一秒钟。于是量子计算机能够应用在破解经典密码、天气预报、金融分析和药物设计等多个领域。为了实现广义的量子通讯网络,我们能够利用光纤来构建城域量子通讯,利用量子中继来实现两个都市之间的城际量子通讯,在量子卫星平台进一步的帮助下,能够实现远距离的量子通讯。
我国科学家通过近20年的努力,成功研制了世界上首颗量子科学卫星“墨子号”并在2016年8月成功发射。到了2017年9月,远距离光纤量子通讯骨干网——“京沪干线”正式开通。结合“墨子号”和“京沪干线”,我们在广域量子通讯网络雏形的技术上差不多初步验证乾坤一体化的量子网络在原理上可行。而在量子计算方面,实现通用的量子计算机还需要长时刻的努力。
为了确保该领域的健康进展,学术界设定了三个进展时期。
第一个时期是要实现量子计算的优越性,量子计算系统对某些特定咨询题的求解速度差不多远远超过了经典超级计算机,展现出量子计算本身的优越。第二时期是构建专用的量子模拟器,用来求解一些经典计算机难以胜任的特定复杂咨询题,比如高温超导机制等。最后第三时期的目标是希望在量子纠缠的帮助下,实现通用的可编程量子计算。
在2020年我们实现了76个光子的量子计算原型机“九章”。“九章”在求解高斯玻色取样的特定咨询题上,速度是当时最快的经典超级计算机的10万倍。之后我们的系统进行了不断的升级,近期我们差不多实现了255个光子的933号光量的计算原型机,它针对特定咨询题的求解能力差不多比经典的超级计算机快1000万亿倍。
为了在将来实现全球化的量子通讯,我们需要克服目前卫星量子通讯所面临的难题。一是单颗的低轨卫星没方法直截了当覆盖全球;二是目前的卫星还只能在低区工作,而相应的解决方案是经过发射多颗低轨卫星来构成一个高效率的卫星网络。也算是讲在所谓量子星座的基础上,我们能够发射具有更长过境时刻的中高轨卫星,以此来分发更多的密钥。
而这些方案实现的一个根本前提,算是卫星能在太阳辐射的背景下工作。在2017年的时候,我们差不多实现在日光背景下的远距离自由空间量子通信的地面实验,验证了量子通讯是全天可行的,实现了实用化、低成本和轻量化的微纳量子卫星。
国际上首颗微纳量子卫星“济南一号”差不多在2022年7月发射,它载荷的分量惟独20公斤,与“墨子号”相比差不多大幅度降低。当前我们正在研制第一颗中高轨量子卫星,打算2026年前后发射。除了要实现量子密钥分发之外,这也为中高轨卫星量子周密测量提供了新的平台。
我们利用中高轨量子卫星实现万公里量级的量子纠缠分发,在将来将借助全球化的纠缠分发将多个原子纠缠起来,从而大幅度提高原子钟的稳定。与此并且,我们打算在中高轨卫星上搭载一颗超高精度的光钟,它的稳定度将达到10的-19次方,也算是讲一年它的误差不超过一秒。
利用高精度的光钟和高精度的光频标的传输,就能够实现全球化的高精度提升,相比当前微波受损的准确度能够提高4个数量级,为新一代的秒定义提供了相应的技术支撑。在外太空由于磁场和地球引力的噪声极其微弱,所以在原则上光钟的稳定度能够达到10的-21次方。
利用超高精度的光钟和超高精度的光频传输,我们能够在外太空构建一个干涉仪,利用干涉仪开展一些物理学基本原理的检验,包括暗物质的探测和引力波的探测等等。
在量子计算领域,我们希望在将来的5年能够达到对数百个量子比特的相关控制,构建专用的量子模拟器能帮助我们理解一些复杂物理系统规律,如高温超导的机理,量子霍尔效应等等。经过10至15年的努力,我们希望可以控制上百万个量子比特,并实现量子纠缠,初步构建可编程的通用量子计算机。
来源:中国科技网